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Momentum and thermal transport in neutral-beam-heated tokamaks

N. Mattor and P. H. Diamond®

Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712

(Received 29 June 1987; accepted 28 January 1988)

The relation between momentum and thermal transport in neutral-beam-heated tokamaks with
subsonic toroidal rotation velocity has been investigated. A theory of diffusive momentum
transport driven by ion-temperature-gradient-driven turbulence (7, turbulence) is presented.
In addition, the level of 7, turbulence is enhanced by radially sheared toroidal rotation. The
resulting ion shear viscosity is y, = 1.3{(1 + ,)/7 + [(L,/2¢,)(dVy/dr) |} (p2c,/L,). The
associated ion thermal diffusivity, y;, is identical to y,,. Thus a scenario based on velocity-
shear-enhanced 7, turbulence is consistent with the experimentally observed relationship

between thermal and momentum confinement.

I. INTRODUCTION

For tokamaks to attain ignition, auxiliary heating is
probably necessary. The most common means of auxiliary
heating is by the tangential injection of an energetic beam of
neutrals (NBI heating). Unfortunately, NBI heating gener-
ally results in the degradation of energy confinement time
(7z) which decreases with increasing power so that the
heating becomes less efficient the more it is applied.! Con-
ventional wisdom explains the heat loss in terms of enhanced
electron thermal conduction, but experimental results from
D-Ill indicate that ion losses are of comparable importance.>
Neoclassical predictions of ion conductivity (y;) are toolow
by about an order of magnitude. A good understanding of
the ion loss mechanism is at present still developing.

Experimental clues to the nature of the ion conductivity
are sparse, since direct ion temperature profile measure-
ments have become possible only recently, with charge ex-
change spectroscopy. One commonly observed feature is
that the confinement times of ion temperature (7;) and of
the toroidal rotation rate (7,,) tend to behave alike, with
similar scalings. This suggests that momentum transport
arises from the same cause as the anomalous y;, and so a
unified description of the two processes is desirable. Further
incentive for the study of momentum confinement comes
from its inherent ability to isolate ion from electron dynam-
ics less ambiguously than thermal studies, since momentum
is carried almost exclusively by the ions.

Attempts to explain momentum loss rates by classical or
neoclassical mechanisms appear insufficient to provide a
complete description of experimental observations. Classi-
cal predictions (7, '~w,,p}/a’) are far too slow to agree
with observed dissipation rates. The gyroviscous theory of
Stacey and Sigmar®* assumes a plasma rotation aligned with
the magnetic field, and then argues that the subsequent devi-
ation from solid body motion is damped at a rate governed
by the classical gyroviscosity (7, '~v§, /Q,R?), which is
more consistent with experimental observations. However,
it has been noted by Connor et al.® that the strong parallel
damping provided by the gyroviscosity leaves the plasma
with a predominantly toroidal (rigid rotator) flow. Connor
et al. then demonstrate that, excluding up—~down asymme-
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tries, etc., collisional damping of this flow is classical, again
too slow to agree with experiment. Experimental departure
from all nonlocal theory predictions has been observed in
recent experiments on TFTR,® which demonstrate inward
diffusion of momentum deposited on the tokamak edge. A
supplementary description of momentum transport, which
accounts for this diffusive anomalous behavior, is desirable.

The present work examines the possibility that ion-tem-
perature-gradient-driven turbulence (hereafter “7, turbu-
lence’) plays a substantial role in determining both momen-
tum and thermal transport in NBI plasmas. This mode is
destabilized in plasmas with steep ion temperature profiles
and relatively flat density profiles, such that
7;=dIn T;/d In ny> 7, ~1.5. This theory has several dis-
tinct advantages. First, we should expect the value of 7, to be
greatly affected by the NBI process, since the beam applies
heat directly to the ions in a localized region of the plasma.
Second, since the mode is essentially a parallel ion sound
wave, with fluctuations in ion pressure (heat) and ion paral-
lel velocity (momentum), it offers a good chance to explain a
causal connection between the transport of these two quanti-
ties. Third, being a localized microinstability, the nature of
the resulting turbulent momentum transport is inherently
diffusive in nature. Fourth, its dependence on the tempera-
ture profile offers an immediate explanation for the observed
decrease of momentum transport in TFTR when the heated
region is changed from the plasma core to the edge.®

All of these suggest that 7, turbulence is a good candi-
date for the cause of the anomalous transport in NBI plas-
mas. However, current theories of the 7, instability do not
include the effects of a radially sheared toroidal rotation,
dV,,/dr+#0, asintroduced by the neutral beam. We find that
it has two important effects. First, the sheared velocity field
naturally facilitates prediction of the turbulent viscosity re-
quired to explain anomalous momentum transport. Second,
it acts as an additional free energy source that enhances the
existing ion-temperature-gradient turbulence level. Hence
one of our goals here is to improve the current theory of 7,
turbulence by incorporating these two aspects of toroidal
shear flow.

We shall assume the following about present-day NBI
regimes. First, the incoming beam of neutrals is rapidly ther-
malized so that a one-fluid description of the ions is ade-
quate. Second, the value of 7, should be sufficiently above
7;. that a fluid theory applies.” Finally, we assume that the

© 1988 American Institute of Physics 1180



rotation rate of the plasmas is below the sound speed (¥, /¢
< 1), so that a shock wave is not excited.
In this paper, we examine the effects of a parallel veloc-
ity shear on %, turbulence, generalizing the results of Ref. 8.
The principal results are the following.
. (1) The turbulent shear viscosity, calculated from
Xo= — (0,0,)(dV,/dr)~, is given by

o =33[l+ni+(_[‘_ndVio)22<ky 5) 2
» .

Cs,
T 2¢, dr L, PsCs

for %, > 1, = 1. Here (k, ) is the rms spectrum-averaged po-
loidal wavenumber, and (k,p, ) =0.4 may be taken from the
non-shear-flow case® for the purpose of a rough estimate.

(2) The ion thermal conductivity y, is found to equal
the value of y,_, given above, which is suggestive of experi-
mental observation. This agrees with the basic scaling of Lee
and Diamond®( y, ~ [ (1 + #,)/7]*(k, )/L,). The enhance-
ment factor [(L,/2¢c,) (dV,,/dr)]? represents the role of
the shear flow as an additional free energy source, and is
related to the hydrodynamic Richardson number.®

(3) For dissipative trapped electron dynamics, a simple
estimate shows that the electron heat conductivity due to 7,
turbulence is enhanced by the velocity shear:

e = 1063/2[lﬂ + (E'L ﬂ’_)zr _’ﬁ

T 2c, dr v, L?

where € is the inverse aspect ratio.

(4) We demonstrate that the calculation of saturated
turbulent diffusivity as an eigenvalue of the renormalized
equations, as opposed to the more standard mixing-length
method, takes far better account of the structure of the eigen-
modes. Specifically, it is the orly available method for accu-
rately determining the saturation levels in the presence of
multiple free energy sources, as here. Also, this technique
allows resolution of purely numerical factors, like the coeffi-
cient of 3.3 above. Furthermore, it allows a prediction of the
nonlinear frequency shift, which comes from the imaginary
component of the diffusion eigenvalue.

The current theory is relevant in the regime 7, > 7, ~1,
Vio/e; <1,and dV,,/dr < (r¢,/L,) [ (1 +9,)/7]*"2

The remainder of the paper is organized as follows. In
Sec. I1, the basic model is reviewed, and modifications due to
the sheared flow are discussed. In Sec. III, the modified lin-
ear theory is presented. In Sec. IV, the one-point renormal-
ization is performed, with subsequent solution for saturated
turbulence levels. Section V contains calculations of trans-
port coefficients. Section VI contains the summary and com-
parisons with various experiments.

il. BASIC MODEL

To describe the nonlinear ion dynamics of a beam-heat-
ed tokamak, we shall adopt a simple one-fluid ion model.” In
this model, we assume fluid ions and adiabatic electrons, and
thereby the phase velocity regime vy, X (0/k) ) <vy, . Also,
we consider a sheared slab configuration, with all inhomo-
geneities in the radial (X) direction, which necessitates the
macroscopic gradient ordering of 7, > 1 for consistency of a
fluid treatment. Furthermore, for simplicity we shall take
L, <L, (ie,; <L, /Lz), although it is possible to con-
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struct a similar fluid slab theory with L, R L,.

In sheared slab geometry, the magnetic field is given by
B =B,[2+ (x/L,)p], and so the parallel wavenumber is
given by k; = (x —x,)k,/L, in the neighborhood of a
mode rational surface x,, where k-B = 0. Since the back-
ground plasma is inhomogeneous in the x direction only,
perturbations have the form f{x)exp( — iwt + ik Y+ ik, z).

Here, the primary modification to previous such models
is the inclusion of a radially dependent toroidal ion velocity,
V, (x) (alternately referred to as rotation velocity, toroidal
momentum, and shear flow). We assume that the rotation
velocity is subsonic (¥, /c, < 1), apparently consistent with
regimes of current experimental interest,'® but make no as-
sumption yet as to the degree of velocity shear,
(Ly)~'=dIn V,/dr, except that it be consistent with the
fluid model, as verified a posteriori.

In the sheared slab model of a tokamak, the toroidal
direction is given by «p (cos a)z -+ (sm aly, where
a = tan~'(€y/q,) (i.e., the angle between and b = B/|B |
at x,), and g, and ¢, are the safety factor and the ratio of
minor to major radlus, each evaluated at the rational surface.
Since €,/g, <1, then @, 2, and b are approx1mately parallel.
The slight deviation between band § @ is crucial to the gyro-
viscous theory, but in the present case the distinction is much
less important, since the primary mechanism of viscosity is
temperature-gradient-driven fluctuations, and is insensitive
to this small difference. The difference between the toroidal
and parallel components of the velocity is small, since
Vie=V,B,/\B, +B5=V,[1—i(€/q)*]

In this fluid model, the ion dynamics are described by
the ion density, n; = (n,) + #;(x,t), the ion parallel veloc-
ity, vy = (Vuo> +by;(x,1), and the ion pressure,

= (P,y) + P, (x,t), where ( ) denotes an ensemble aver-
age These quantities evolve according to the ion continuity
equation, the parallel momentum equation, and the equation
of adiabatic pressure evolution:

on;
—;97+V‘(n.-vl.-) + ¥, () =0, M

al)",
m;n; % ——+ (Vg +v;,)*Vy;
= -—en,V"Q—V"P, +#" Vﬁv",’ (2)

aP,
_at_+ (VE -+ V"i)‘VP,- + FP,V" U"i = 0, (3)

where @ is the electrostatic potential, I is the ratio of specific
heats, and y, is the parallel viscosity (due to either Landau
damping or collisional viscosity) required for saturation of
the turbulence. [One might notice that neither V, nor the
gyroviscosity appear in the viscous term of Eq. (2) as aresult
of the gyroviscous cancellation on drift wave time scales.'
As a result, the viscous term will not in itself be the result of
much momentum transport, as noted in the Introduction. ]
The perpendicular ion dynamics are due to ExXB, diamag-
netic and, in next order, polarization drifts, where, respec-
tively,

N. Mattor and P. H. Diamond 1181



Vg = (¢/B)b XV,
VD,~ == (C/ean )’b\ xvpiy

cm; (9
\A p (3t + v V)V<1>.

Electron dynamics are assumed adiabatic, and the equa-
tions are closed with the quasineutrality condition

i, =h, = (n)e®/T,,
where ® = (P(x)) + &(x,t). The background radial elec-
tric field, generally present in beam-heated tokamaks,'? is
the by-product of a flow that deviates from the direction of
B, and obeys the radial force balance equation. In a slab
model, a transformation to the toroidally comoving frame
(below), applied to the electromagnetic field, eliminates E,
from the equations.

To simplify this set of equations, we eliminate 7, and v,
from Egs. (1)-(3), and make the assumption that the radial
width of the fluctuations is much less than the scale length of
any of the macroscopic gradients. To simplify notation, we
rescale time and distance to units of Q;” 'and p, ( =¢,/Q,),
respectively, and undimensionalize the remaining fields as
¢ = e®/T,, by = by,/c,, and p = (5,/{P:o))(T,/T,). This
yields the following three equations in @, 9, and p:

- 147, .
(%Jrvo-v)(l —Vf)¢+vb[l +( i )vi]vy¢
d - V. -~ -
(Et- + V0°V)v" -— —L—z— Vy¢ + b XV¢°Vv"
= —Vyé—V\p+uVid, (5)
ad - L+ ~
5+ v+ (2 2w.d
+b XV$Vp+ YV, =0, (6)
where
_dhT, _ _d(nn) =(d1nV0)-‘
M= dinn’ ° dx ’ v dx ’
Q, T
V0=<V‘p)9 lu'=ﬂ'2_l'r T=£, T= e)
cs cs T T'l

and we have retained only the EXB nonlinearities, since
others are of relative order k /k, (£1).

The shear flow ¥, has two effects on the 7, equations.
First, it introduces a toroidal Doppler shift in all time deriva-
tives, which we eliminate by performing a Galilean transfor-
mation in the @ direction to the comoving frame. More im-
portantly, the radial EXB convection of ion momentum,
represented by the second term in Eq. (5), determines radial
momentum transport. The fact that E X B motion also deter-
mines ion thermal transport, represented by the second term
in Eq. (6), is the underlying reason for the eventual result
that y; = y,,.

Finally, we note that the inclusion of toroidal ion mo-
mentum does not modify the nonlinear structure of Ref. 8,
and so the energetics, renormalization, etc., are all quite sim-
ilar. However, the fact that the shear flow provides an addi-
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tional free energy source underlies our result that the inclu-
sion of d¥,/dx effects enhances transport.

lil. LINEAR THEORY

The linear theory of the 7, instability has been addressed
by many authors, and we do not repeat all the basic details
here. However, no one has considered the effects of a sheared
toroidal ion flow on the 7, mode, so we find it necessary to
modify the basic linear theory to include this effect. Also, we
shall consider the possibility that the sheared velocity field,
acting as the dominant free energy source, might drive a pure
shear-flow instability, as described in Ref. 13.

Linearizing Eqgs. (4)—(6), Fourier transforming in the y
and z directions, neglecting Y [which gives corrections of
order (k;/k,)*], and taking k; = k,x/L,, we obtain the
eigenmode equation

a’%,

x2

where the “potential” function is given by
_ 2, 1-0 J? $°x’ )
0 = (- k3 + 5= TS o)

+ Q(x,Q)éy =0, (7

(3)
and we have used the notation

w : Ln
y §=
k,vp L

1+ 7, 2
ko ltm J=(V0Ln)_
T L,

As will become apparent, K and J serve to parametrize the
free energy content of the ion temperature gradient and the
ion shear flow, respectively. The parameter J is analogous to
the Richardson number, used to describe shear flows in clas-
sical fluid dynamics, here inverted for convenience. The dif-
ference is that the buoyancy terms due to the gravitational
effect on the density gradient (g/L,) are replaced by drift
frequency terms (k 20}, ), and adjusted to fit into the present
scheme of parameter undimensionalization.

Equation (7) is a simple Weber’s equation, and the low-
est mode is given by

Q= <1,

i (x) = go expl — (is/Q) (x — xo)?], (9)
where

xo= (J2/25)[Q/(Q + K) 1, (10)
with the dispersion relation
(1 4+ k)0 + (Kk2 +is— 1)Q +isK

= —(J/) [V (Q+K)]. (11)

The left-hand side of Eq. (11) is the standard dispersion
relation for the slab 77, mode,'*!* and the right-hand side
represents the modification due to shear flow. This equation
describes three modes: the usual Pearlstein—Berk electron
drift mode, the shear-flow modified 7; mode, and also a
shear-flow-driven instability. The drift mode is stable every-
where for adiabatic electrons; however, the last two of these
are potentially more important, and hence are the focus of
the rest of this section.

N. Mattor and P. H. Diamond 1182



We first consider the 7, instability, For the regime
where the present fluid theory is applicable (discussed be-
low) it suffices to solve for () by iteration, assuming that the
right-hand side of Eq. (11) is small. Neglecting the drift-
wave root, a first-order iteration gives the unstable 7, root as

Q, =isK/(1 —J/4K) =~is(K + J /4) (12)

in the low-k, regime (i.e., k3 €1/K).

From this simple analysis, we see that the shear flow has
two effects on the 1, mode. First, it enhances the growth rate
at low k,, with leading correction of order J~ (Vo/L,)>.
This enhancement is without regard to the sign of either ¥,
or L. Second, we see from Eqgs. (9) and (10) that the shear
flow shifts the center of the mode away from the x = 0 ra-
tional surface. While this latter effect is not too important for
regimes of current interest, it underlies a third effect not
described by our simple fluid equations.

This third effect, which is apparent in the kinetic analog
of Eq. (7), is a cross term combining effects of shear flow and
magnetic shear damping, and varies asJ !/2x> (see Appendix
A). This effect is not represented in the fluid mode equation,
Eq. (7), although it sets an upper limit on J for the model to
be valid. We find that the best way to describe this limit
involves a gyrokinetic analysis. Since this analysis is not ger-
mane to our central purpose, it is outlined in Appendix A.
The upshot of this analysis is that in order for the cross term
to be unimportant, we must require

J12&|7Q(Q + K) /35X s |-

Using Q~isK and x,,, ~xr~K'? (the WKB turning
point), we find that J /2« (7/3) K 3/2. Beyond this limit, the
simple quadratic well structure embodied by the fluid ap-
proximation is no longer valid, due to the disappearance of
one of the WK B turning points. While the mode may still be
locally unstable, the eigenfunction characteristics are drasti-
cally altered and require a more detailed description than
that given here. Shooting code comparisons of Egs. (7) and
(A4) verify this result. Comparison of the above limit with
the measurements of Isler ef al.'® reveals that this restriction
does not exclude present-day parameter regimes, where typi-
cally J <1 and K~ 3-5.

We next consider the question of whether or not there is
a pure shear-flow-driven instability described by our equa-
tions. This is the mode that persists in the limit where the %,
driving force is turned off in Eq. (11). This mode is some-
what different from the classical Kelvin—-Helmholtz instabil-
ity, even though the free energy source is the same. The latter
is essentially a two-dimensional mode and is restricted by the
Rayleigh inflection point theorem to be localized about radii
where d?V /dr* = 0.'° The present case has two significant
differences. First, the line bending term, V,J|, is present,
which tends to stabilize the mode except at the outer edge of
the torus. Second, parallel sound wave coupling (with mag-
netic shear) is retained, thereby localizing the mode and al-
lowing it to be unstable on any rational surface. In this form,
the shear-flow-driven instability is a more plausible explana-
tion of microturbulence than the classical Kelvin—-Helm-
holtz instability, since the former modes, if unstable, are able
to span the entire radial profile with small-scale fluctuations
without relying on the existence of inflection points.
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A similar type of mode has been studied previously by
Catto et al.,"* who used the term “Kelvin-Helmholtz,” al-
though their analysis differs from the classical case in the
same sense mentioned above. In their work unstable modes
were found, which in various limits (7,50, 7>1,
L, — ) seem to agree with the solution of Eq. (11).
However, their study only addresses the limits L, — o0 and
then L, — « individually, so that in both cases the potential
is approximated as a simple quadratic in x. The more realis-
tic case of a shear damped mode with moderate Richardson
number is never addressed. Since a consistent treatment of
this situation involves solution of a Schridinger-like equa-
tion with a relatively complicated cubic potential (coming
from the same effect that limits the validity of the 5, mode
above), analytical results are difficult to obtain; however, it
is possible to examine the situation numerically using a
shooting code with the full kinetic potential, Eq. (A4). Our
preliminary studies indicate no regime where the unstable
shear-flow-driven modes predicted by the fluid theory per-
sist in the more detailed kinetic analysis. The reason appears
to be that if the Richardson number is above the threshold of
instability predicted by the fluid theory (J> 1), the subse-
quent shift of the mode center is so large that the potential is
drastically altered by terms of order x> and higher. However,
we must stress that the above only implies that the pure
shear-flow-driven instability is not well described by the flu-
id equations and the particular geometry of the present sim-
plified model. It is possible that toroidal effects, FLR effects,
and so forth are present in a more realistic situation to give a
strong shear flow instability.

IV. NONLINEAR THEORY

Approximation of the one-point nonlinear 7, equations
has been performed in Ref. 8, using DIA renormalization of
the nonlinearities. Then, an augmented mixing-length
scheme was used to estimate the saturated turbulence levels.
In the following, we adopt a similar approach, but differ in
two significant ways. First, the vorticity nonlinearity in the
continuity equation is renormalized so as to include qualita-
tively the effects of the nonlinearly driven potential fluctu-
ations, which are generally neglected. Second and more im-
portantly, we improve upon the arguments used in Ref, 8 by
following a method whereby the renormalized diffusivity is
treated as an eigenvalue necessary for turbulent saturation.’

The following calculations are also valid in the zero-
flow limit (J—0) and hence supercede the one-point results
of Ref. 8.

A. Renormalization
Fourier transforming Eqs. (4)-(6) in y and z yields

—g;(l — V) + v, (1 +KVE)$k + iky Dy

= —N($Vi9), (13)
3 ~ Vo .k "t k 7 k -~ kz,.
) v + ik Sy + iky By + pk D
N. Mattor and P. H. Diamond 1183



ad . , ~ A <
—a_tpk +1Kw*e¢k +lk||Tvk =Nk(¢9p)9 (15)
where the symmetrized nonlinear convolutions have the
form

N r=[2(S (kb i)

I8 _y

— ik, ; fk.]—(]’«»&), (16)

where k, k', and k" denote the “test,” “background,” and
“driven” modes, respectively, such that k + k'’ = k”. Using
the standard weak coupling closure approximation to renor-
malize the nonlinearities, we iteratively substitute the non-
linearly driven fields {2, (V24,-)?, 5{22, and p2 for the
corresponding modal (k") fluctuations. The superscript (2)
denotes the “driven” fluctuation resulting from the direct
beating of test and background modes. Hence

Aw,. (1 — vi 1P + i, (1 + K V3)$P

Aw,. B2 — (Vo/Ly)iky 6P + ik 192 + ik 152 = S(D),

(18)
Doy PP + iK'l 2 + ik 1 YTP = S(p), (19)
where the nonlinear sources are given by
o (o7 B+ o O -
S = (3 2R — ik, ST,
¢u
+ ik ¢k fk ﬂ (20)

which will yield phase coherent terms when substituted into
the nonlinearities. Here, Aw,- may be regarded as the rate of
decorrelation for three-wave resonance.

At this point, we depart slightly from the previous treat-
ments of renormalization.!” The standard procedure is to
neglect the driven potential, ¢{2, completely, based on its
smoothness relative to the other driven fields, and the fact
that its direct inclusion renders the equations intractable.
While this is probably adequate for the §j and p equations,
the convected quantity of the continuity equation, V2 $,hasa
simple and direct (linear) relation to the field that convects
it, &5 Therefore, it is not clear that the convection and the
subsequent back-reaction of the convecting velocity are in-
dependent effects, as in the other equations.

Because of the mathematical difficulty of explicitly in-
cluding the driven potential, (2, it is better to express it in
terms of (V2 g, )®, which may be done via an “integration
by parts” in the vorticity nonlinearity [i.e., Eq. (16) with
F—-V®¢)] with respect to x. This latter operation is per-
formed by noting that near the mode rational surface of k,
k| =k |/, and hence

a k, _d

_~_

ox’ ky ax"

which allows us to rewrite the vorticity nonlinearity as
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k2+2k k, ~
N (Vi) = [—z(— i) LI G
. k2 +2k,k’\ 3¢
_lky;( > k;,zy y) Ix ,k ¢k"]
(21)

However, since the 7, mode has, to lowest order, incom-
pressible mass flow [V+(nv)~0], this amended renormal-
ization of the vorticity nonlinearity will have only secondary
importance relative to the final results.

Now that N, (#,V2¢) can be expressed in terms of
(V24,-)? alone, we can neglect #3’ in the remaining two
nonlinearities, as usual. Furthermore, we neglect the terms
in Eqgs. (17)-(19) that vary as k ;. Hence

(V24 )P =S(V3g)/Aw,., (22)
p§3’~S(ﬁ)/Acok.. (24)

Substituting these for theﬁ. in the nonlinearities yields

~ 2 d .. 9d
Nk(¢avi¢)=a‘,ﬂk Ox ¢k"‘ky,ukyv b
.. 9 - -
+—5;/3k -5;¢k—ki/9{’¢k, (25)
N. (.0 d I 2 1y vy
x (:5)) =‘5;C'Dk “a;l’nk — kDY, (26)
Ne(35) === D" 2=, — kDb, 27

where the various diffusion coefficients are given by
k2 k '2|$ , ]2
ﬂiXE Z : 2 y - ’
v (k) Aw,.
2 p (2
W=y k; : |0y /X' | ’
w (k) Ay
XXEZ ki k;2|v1$k'lz
“TE kD Ao
poy k; Vi3 /dx'|?
< (k))?
Dxx= k}2|‘;5w|2 ,
Aoy

D{y=2M_

Kk Aa)k»

Aw,.

=

We propose the following physical interpretations for
the above renormalized nonlinearities. First, D~ and D}?,
which appear in both the momentum and pressure equa-
tions, act as non-Markovian turbulent diffusivities that scat-
ter the ¥ and j fluctuations radially, away from the rational
surface. This directly reflects the property that the unrenor-
malized nonlinearities couple incoming fluctuation energy
from the low-k, modes (bound and growing) to high k,
(which couple to radially outgoing waves), so that fluctu-
ation energy is transported away from the mode rational
surfaces in a diffusive manner (Appendix B).

In a similar way, u;* and pf serve as nonlinear eddy
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diffusivities acting on the vorticity, V24, while B and BY
act as a turbulent back-reaction to u;* and uf’, maintaining
the property that ¢( ~ i) not be convected by the E X B mo-
tion. The fact that z and S vanish as k, —»0may be readily
demonstrated from the unrenormalized equation. This does
not pose a problem for determining the low-k, mode satura-
tion level, however, since energy cascading may proceed by
linear coupling of ¢ to b, which can then cascade via the
mode coupling represented by D, .

Finally, it is useful to estimate the relative magnitude of
the various diffusivities in the k ? < (k2) . limit as

P = (k5 /€K 3 ) s ) DI,
B &= (k3/ (K3 Y oms ) [ 1/ (AX) s 1 D
with similar relations for 4 and S8 . Here,
(k2yom = 3 k2| ? 1 Ezk(a&s,:/ax)z.
2k|¢k| (Ax)?"rns Ek|¢k|2

Thus, while ¢ and S are small relative to D, and have little
influence on thermal and momentum transport, we retain
them because of their physical significance for the model
used here. The rms quantities must remain as free param-
eters, since their evaluation requires a two-point, spectrum
theory. However, for the purpose of estimation, we can use
the result from Ref. 8 that (k,p,) .,  ~0.4.

B. Solution at saturated turbulence

(28)
(29)

The renormalized equations may now be regarded as
analogous to the linear equations, and the renormalized non-
linearities play the role of k-dependent free parameters that
account for transport of energy to and from various parts of
k space. A one-point “closure” calculation may now be com-
pleted by considering only the lowest k, part of the spec-
trum, which is almost purely growing, and asking how large
the renormalization quantities D, u, and 3 must be in order
to couple energy to smaller scales as fast as it is fed in by the
instability mechanism.

The standard method for calculating saturation levels
employs a “mixing-length” scheme. While this method is
useful for obtaining the correct scalings with certain key pa-
rameters, it is deficient in several regards. First, the condi-
tion for saturation is derived from “asymptotic balance” of
certain parameters, while ignoring others. Such a procedure
is inherently insensitive to the detailed phase and amplitude
structure of the various modes at different k, which may be
important. Specifically, while some basic parameter scalings
are determined, others are ignored completely. It is difficult
or impossible to devise a more elaborate mixing-length
scheme to incorporate the more subtle scalings. For exam-
ple, in the present case of a system driven by two free energy
sources (gradients), it is not clear how to use asymptotic
balance of source and sink for an accurate determination of
the relative contributions of 7, and the shear flow to the
turbulent excitation. Second, the differential operators are
approximated asymptotically using the turbulent mixing
length, A, , and the subsequent approximation of a differen-
tial equation as an algebraic equation leaves potentially large
numerical factors unresolved. Finally, a consistent picture of
turbulent saturation, one based on steady-state energetics, is
never established. Using the current approach, such a pic-
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ture is outlined in Appendix B. All of these deficiencies are
corrected in the following “diffusion as eigenvalue” calcula-
tion. This technique makes no further assumption on the
dynamics of the system, and applies everywhere the fluid
equations are valid.

Considering only the low-k, portion of the spectrum
(dominantly growing), we set 8 /8¢ to zero in Egs. (13)-
(15). In this regime, we can also neglect k2D, k2ul?,
k:BY, kijp, and Yk, and let V} ~32/3x*. Then, Fourier
transforming Eqgs. (13)—(15) [with Egs. (25)—(27) as the
N, 1 in x and solving for ¢, yields

1910
k2 ok, k® Ok,
D""Ls Jl/2 1

9_{( 4 )
k, K k2 ok \1+iD"k2/Ko,,

(D=)L? |

k2 K
1 +iD~k%/Ko,,

(30)
where for convenience we have defined
¢=(1 — iKw,./D*k2),.

We can reduce the number of parameters, and extract
the basic mixing-length scalings of diffusion and mode width
by defining N=(L,/K’k,)D{¥, M= (L,/K 2k,
B = (L,/Kk,)B7, u =K k,. This yields

1219, y( ) 1o b )

u? du u* du k u? du\1— isNu?
. 2 . 4
L N? 1 —(1+iB)u*+ isMu $=0. (1)
1 — isNu?

Cast in this form, it is clear that the resulting dispersion
relation for N, M, and B will depend onlyons = L_/L_ and
J /K, so the mixing-length results somewhat succeed in re-
solving basic scalings.

Equation (31) may be manipulated into “Schrodinger
form” as

82

ZZ¢+Q(2NMB)¢? 0, (32)
with
_N_2(1 — (1 +isB)|z|*? + isM |2|*/
1 —isN |z[*/®
J 1
S S NE— 33
4K (1—1sN|z[2/3)) (3
where
= o=l o)
z=u3, =eX
=P ok 1—1sN|z|2’3 v

and we have noted that small mode width (Az< 1, shown a
posteriori) implies that

ST ) T

32\ 1 —isN |z|* )~ 1 — iNs|z]? 3z

This approximation is only applied to the term dependent on

J, so this “Schrodinger approximation” is exact in the limit
of no shear flow, J—0.
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The dispersion relation for Eq. (33) may be obtained by
a WKB approximation, with the z; ~ 1 turning point (since
Az 5 1 implies a potential smooth relative to the mode). Us-
ing s« 1 as an ordering parameter, we find to order s,

fr [Q(zN,M,B)]"%dz

- N(l — -{-)2%(1 + ’%(N+ SM— 6B)) _r

4K
(34)
That is,
5M 6B 16
NZi (1 —_——) 4N - ———————— =0. 35
+N N + (1 —J/4K)? ()

If we assume that M /N and B /N are independent of N, as
with Egs. (28) and (29), then we can solve Eq. (35) as a
quadratic equation in N. The root that is dominantly real is,
to order s,

SM 6B)]. (36)

—_— — + —_— e ———
(1 - J /4K)? [ ( N N
Restoring the parameter scalings and using the estimates in
Eqgs. (28) and (29) yields, for J /4K <1,

2 -o(-2))
D=4 K+ 21— 1— 2 . 37
x ( +4) Ls[ ’s( T

This is the principal result of this nonlinear analysis.

The first thing to notice is that D" is dominantly real,
the imaginary component being of order s. In the J— 0 limit,
the scaling agrees with the results of Ref. 8 (ie,
D~K?k,/L,) and importantly, we find that this result is
enhanced by a numerical factor of 4 in this more accurate
calculation. The shear flow, represented by J, further en-
hances the diffusion rate.

The imaginary part of D ** is a nonlinearly induced fre-
quency shift, and does not affect overall transport. It is inter-
esting because it lends itself to a simple physical interpreta-
tion, as follows. From inspection of Eq. (37), one can see
that this shift comes from two physical processes. First, non-
linear coupling to modes of different frequency produces the
portion of Im(D**) that is independent of z and B, ie.,
which remains in the ki <(k i Y mms limit. Second, there is a
part induced by nonzero eddy diffusivity, which contributes
only to the imaginary part of D **. This is because transport
of vorticity, which represents momentum fluctuation with
no net momentum content, will only affect the fluctuation
frequency of the momentum, not its overall rate of diffusion.
The latter is a good example of a process that may only be
resolved by an eigenvalue solution for the turbulent diffu-
sivity, in which the details of the linear energy exchange
processes are accounted for.

Numerical analysis of Eq. (32) (shooting code) qual-
itatively confirms the WKB solution. Quantitatively, they
show a factor of 3.3 in place of 4, which is constant for
5§%0.2.

Finally, we should note that in Ref. 8 it was shown that
consideration of spectrum broadening reveals that D" is
enhanced by a factor of about [ (7/4) In (R,)]% where R, is
the 7,-turbulence analog of the Reynolds number. We ex-
pect that a spectrum analysis applied to the present case
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would show a similar enhancement. However, since this re-
quires a two-point theory, we shall not address this issue
here.

V. TRANSPORT

Having obtained the saturation level of turbulent diffu-
sivity at long wavelength, where most of the turbulent trans-
port takes place, we next apply this knowledge to finding the
levels of turbulent viscosity y,,, the particle convection ve-
locity ¥,, and the ion and electron thermal conductivities y;
and y,. This we do by replacing the nonlinear convection,
b ><V¢ -V in Egs. (5) and (6), with the nonlinear decorrela-
tion rate, Aw,-, taking d /3t—0 and solving. Neglecting I',
which gives contributions of order s* (wheres = L, /L,), we
obtain

V, i iKo,,
B = | —2 _m_)l"__{_icu*e(l 0 ) ]¢k,
Lyv, Aw,. Aw,. | Aoy
(38) .
P = — (iw,. /Aoy ) Ky, (39)
which allows various turbulent correlations to be placed in
terms of D, .

The turbulent viscosity is calculated from the appropri-
ate Reynolds stress:

av, 3
— (B, 0) = — Y — ik b by _ ),
<

Xe =gy
where the departure of 5, from 5, is of order (€/q) 2, Substi-
tuting Eq. (38) we note that the terms which vary as x aver-
age to terms proportional to the radial mode shift in Eqgs. (9)
and (10). Since the real part of this varies as s, these terms
give a total contribution of relative order s*> and we neglect
them, obtaining

(40)

v, V, (k;2|¢}k.|2> 4

-2 _yirxl 0 2 z-——‘-’; Dxx,

Xe dr L, %\ Aowy. +0) LV( ¥
(41)

and hence the turbulent viscosity is
Xo =4HK +J/8)(k,) ms /Ly, (42)

where we have neglected Im (D **), which does not contrib-
ute to transport. Redimensionalizing Eq. (42), using the nu-
merical coefficient of 3.3 from the shooting code analysis,
and taking {k,p,) s =0.4 from Ref. 8, we find

1 + 1]1' ( V Ln )2]2 pfcs
=13 + =2 . (43)
Xe [ ; xL,) | L.

The above value of the rms wavenumber was derived in the
¥V, —0 limit, and is probably slightly modified by the shear
flow. Although calculation of this effect is beyond the scope
of the present study, we expect that, as in Ref. 8, the depen-
dence on the free energy strength will be weak.

For particle flux in the central region, the necessary
phase shift between i, and 7, (here adiabatic) is provided
by dissipative trapped electron dynamics.® In this case, the
perturbed trapped electron distribution is given by'®

~eT= eFy, ("1")_. w_m*e[l;'—ne(E"/Te —%)] (_l)),
T, O —Bp, + Weg.

(44)
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where E = imv?, @), is the bounce average of the electron
curvature drift frequency, v.q, = v./€ is the effective elec-
tron collision frequency, and @ is the bounce average of the
fluctuating potential. For the purpose of a simple estimate,
we shall ignore the bounce average in the following. The
particle flux is then given by
3
7 = (i,7) =n.e'? ll-‘*__ivl‘i z(k;2|;,3k, )
-

nVe

(45)

in the high collisionality limit of the banana regime where
Vegr,e > 0,0, . Using the approximation

y I\ (kyp3)
;k;z|¢k'|zz<ykpk>=3.3(1<+7) _If_[:—

and redimensionalizing, we find that the particle convection
velocity is given by

b

rr e3/2 3
V,= ~~0.5 (1+— e)
o v,L L2 2 !
147, ( V¢Ln )2]3 2.2
X + e 46)
[ T 2¢,L, P (

The reader is cautioned that the approximations in this para-
graph make the scalings and numerical coefficients for parti-
cle transport, as well as the electron thermal transport be-
low, somewhat less quantitatively reliable than the y,, and y;
calculations. For example, a full resolution of the € depen-
dence in Eq. (46) would require a theory that includes a
treatment of toroidal effects on the 7, turbulence level,
which is not presented here. For low collisionality plasmas,
the collisionless trapped electron response should be used in
place of Eq. (44).
The radial flux of toroidal momentum is given by

g, =m0, (nod, +AV,))

dv,
= m,.no( —Xo——+V, V¢), 47

dr
where y,, and V, are given by Eqs. (42) and (46). The ratio
of the viscous to convective terms is of order v.q./¢'’w
(> 1), so weexpect y,,, not V,, to determine the momentum
flux.
Theion thermal flux is calculated similarly to the viscos-
ity, using Eq. (39) to yield

K Aa)k,
with resulting ion thermal conductivity
Xi =4(K+J/4)2<ky>rms/Ls =X¢’ (49)

and the redimensionalized form is given by Eq. (43).

The result that y;, = y,, is an important property of 7,
turbulence in the presence of a shear flow, and suggests a
plausible explanation of experimental observations on
TFTR,® ISX-B,!° PDX, ' D-IIL,* and other beam-heated
tokamaks.

Following Ref. 8, we can crudely estimate the electron
thermal conductivity (y. ) associated with the trapped elec-
tron response to the turbulent potential fluctuations. '® In the
dissipative trapped electron regime (@, < Ves.), We may
estimate y, as
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1 ar \T KA e S
Xe =<?mv2 vaEr)> zlsﬁéjlzfv_'zkyz Tk

e K

e

(50)
The notation {---)” represents the velocity space average
over trapped electrons. In the second part of Eq. (50), in
addition to using the same approximations that led to Eq.
(45), we have retained only the diffusive portion of the flux.

Applying the same approximations that led to Eq. (46), we
find

Yo=10-52 [1+ : +( VoL )szcz,

51
v.L2| 7 2¢,L, Gh

and thus y, is also enhanced by the sheared toroidal flow.
The same caveats mentioned after Eq. (46) apply to the y,
calculation.

VI. DISCUSSION

In this work, the effects of a subsonic, radially sheared
toroidal ion flow on 7, turbulence have been examined, in an
effort to assess its role in neutral-beam-heated tokamaks. We
have shown that the levels of fluctuation and turbulent
transport increase with (an analog of) the Richardson num-
ber, J=[(L,/¢c,)(dV,,/dr)]* We have demonstrated that
there is significant diffusive momentum transport (viscos-
ity) in the presence of 7, turbulence, and that the momen-
tum diffusivity and ion thermal diffusivity are the same,
thereby providing a plausible explanation for the observa-
tion that momentum and thermal transport tend to behave
similarly.

There is a striking correlation in the experimental litera-
ture, albeit mostly qualitative, between the application of
stimuli that alter 7, and/or J, and the concomitant observa-
tion of a like change in momentum and/or thermal diffu-
sivity. The well-known degradation of y; with increasing
beam power' is one example. As a possible explanation for
this, it has been proposed*!-*? that the beam injection in-
creases 7),, thus degrading y via the anomalous y,, as well
as the increased y,, as a result of the dissipative trapped
electron response to the enhanced potential fluctuations. As
a second example, recent experiments on TFTR® compare
beam center heating with edge heating (which reduces 7,).
During edge heating, both y, and the energy diffusivity are
reduced by a factor of about 2. As a third example, a substan-
tial decrease of y, following beam turnoff is observed in
TFTR,® PDX,'® and ISX-B.'° This might be explicable as
the result of 7;,(r) and ¥, (r) flattening (thereby reducing
1), and J) as the direct ion heating and shear flow excitation
are terminated. Finally, the decrease of y; in TFTR “super-
shots”?? accompanying balanced injection may possibly be
connected with the concomitantly observed peaked density
profiles, as well as the ¥, —0 turnoff of the Richardson num-
ber enhancement. However, care is required in interpreting
supershot results, since the large density of high energy in
this regime makes the applicability of our one-fluid ion mod-
el questionable.

The results of this paper indicate that shear flow en-
hanced %, turbulence is quite possibly an important factor in
beam-heated tokamaks. However, the present model is a

N. Mattor and P. H. Diamond 1187



crude one, and there are several possible directions for
further study. Among these are consideration of the effects
of toroidicity, neoclassical damping of ion flows, the effects
of an unthermalized beam, and further investigation into the
possibility of the shear flow dominating the temperature gra-
dient drive, and hence destabilizing a predominantly shear-
flow-driven rather than 7; mode.
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APPENDIX A: KINETIC LIMIT OF THE LINEAR FLUID
EQUATIONS

Here, we explore the limit of validity of the fluid equa-
tions by examining the ion gyrokinetic theory?* for geometry
and gradients similar to the preceding fluid model. A Max-
wellian velocity distribution shifted by ¥, (x) in the q) di-
rection is assumed. This yields the followmg perturbed phase
space ion distribution:

Ji(kv,/Q;)

};'(k; v, o) =Fy(v— V||01;)(1 —

X {“’ — ki Vio =k Vo

- Zae [ui(vi L —3)
2

T 2 vy

4 LYoy = Vo) ed
Lv? T,

where F,, is the Maxwellian, J, is the zeroth Bessel function,
and v? = T,/m;,. Integrating away the v dependence and un-
dimensionalizing time and distance to 2,” ' and p,, we find

(AD)

that
i, = G(k) (ed/T,), (A2)
where
/2 .
G(k) = —[1+—1—,—Z (§)Fo[(2") §—1§2]
2Q T T
+i,;zp(;)[(u'+i—i) r,
T 2T
—k (Ty—-T )” (A3)

where Z, and Z ; are the plasma dispersion function and its
derivative,

£ =72k, /L, K)),
= (0 -V, k)/o,,,
T,=1I,(k}/m)exp( —ki/7),
where I, is a modified Bessel function. Applying the quasi-
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neutrality equation with adiabatic electrons, #, = ed/T,, ex-
panding in k2 to first order, and then taking
k%= —3?%/0x* and k; = k,x/L,, we obtain the following
differential equation in x:

2
a¢2k +Q(x;0)é, =0, (A4)
where
/71— G(k2)
Q) = ——— 2, AS
Q(x;Q0) Gk (A5)

This equation reduces to the fluid eigenmode equation, Eq.
(7), when expanded to order x* and k2 in the limit |£ |> 1
and k 2 €1. As with the fiuid version, the potential is even in
x except for the terms induced by ¥V, through the Richardson
number J. The terms which vary as x shift the fluid potential,
but do not alter the quadratic structure; however, this is not
true of the odd terms which vary as x* or higher, which tend
to destroy the quadratic structure at large x. Physically,
these terms represent the effects of higher shear damping
when the velocity shear causes the mode to stray too far from
the mode rational surface. Analytically, we can derive a
crude but adequate estimate of the regime of fluid validity by
requiring that the term cubic in x, which is not in the fluid
theory, be less than the quadratic term, which is in the fluid
theory. Upon expanding, we find

JV2&|7Q(Q + K) /35X oy |-

This is the principal result of this appendix.

The shooting code analysis of Eq. (A4) may also be
used to find the effect of d¥,/dr on the instability threshold,
7., in the spirit of Ref. 7. Although we have not done a
detailed analysis, preliminary studies show that %, is
lowered as d¥,/dr is increased, but not by more than about
15% before the limiting effects mentioned in the above para-
graphs become important. This result is interesting in light
of recent results from transport simulations by Goldston et
al.,”® which indicate that 7, tends to maintain itself at mar-
ginal stability, even when strong central ion heating is ap-
plied. If this is the case, then in the presence of a shear flow
the allowable ion temperature gradient is even lower.

(A6)

APPENDIX B: ENERGY SATURATION

Here, we propose a criterion for turbulent saturation
based on the ensemble-averaged turbulence energies, and
then translate this criterion into a mathematical method for
accurately solving for the diffusion in the low-k, regime of
the spectrum, which is responsible for most of the transport.

We may define the following energylike integrals,®
which represent the degree of turbulence excited in the var-
ious fields:

EW=%J‘d3x(|$lz+ V.81, (B1)
EK=%J‘d3x|v"| > (Bz)

11 3152
E'=—-—]d 1Bl (B3)
N. Mattor and P. H. Diamond 1188



Evolution equations for these energies may be obtained by
integrating Egs. (4)-(6), and using the conservative prop-
erty of convective nonlinearities, § d *x 4 (V¢xb)-VA 0
for any 4. This yields

9 gw- —fd3x¢;5V”z7”, (B4)
ot
d -k 3.0 5 25 = Vo - \v/ 7
P =—)d% U||V||¢+”||V||P+L—V”u »$
v ), (BS)
a ey 1{14+m e
2 EI= _Jd3 [V —(-—) ] B6
ot X |PVioy +\ = JooPV,4 |- (BO)
Hence, the total energy of the system evolves by
+
T R e
Vo /- o = -
+ T OV,8) + VB |2] : (B7)
Vv

These energy evolution equations state that turbulence
energy so defined enters the spectrum at low &, through the
7, and dV,/dr free energy sources, and leaves the spectrum
at high k, through viscous (Landau or collisional) damping.
In order for the energy to move from low to high k,, nonlin-
ear mode coupling must occur, here modeled as triad reso-
nance coupling of k and k' modes to k” over a time of
(Awy. )L

In k space, this transfer of energy must go in the direc-
tion of source (low k) to sink (high k,). Meanwhile, back
in configuration space, the transfer to higher k, translates to
energy going out away from the mode rational surface,
where turbulent fluctuations can damp through the higher
k.

“ For the renormalized equations, which replace the non-
linear equations by linear equations with energy sink D,,
saturation occurs when D, has become large enough that all
the energy fed into the system by instability is carried off to
higher k,, thus turning off the growth of all parts of the
spectrum.

Analytically, D, may be treated as an eigenvalue of the
renormalized equations that regulates energy transfer
between various parts of the spectrum. By restricting our-
selves to the low-k, part of the spectrum, where most of the
radial transport occurs, all diffusivities except D are of
small relative importance in Eqs. (25)—(27), and hence we
may neglect them.
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